Periodic solutions of a second order differential equation with a large parameter

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions for a Second-order Neutral Differential Equation with Variable Parameter and Multiple Deviating Arguments

By employing the continuation theorem of coincidence degree theory developed by Mawhin, we obtain periodic solution for a class of neutral differential equation with variable parameter and multiple deviating arguments.

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

Periodic solutions for a second order nonlinear functional differential equation

The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...

متن کامل

Periodic solutions for a kind of higher-order neutral functional differential equation with variable parameter

In this paper, we consider a kind of higher-order neutral equation with distributed delay and variable parameter: (x(t) – p(t)x(t – σ ))(n) + f (x(t))x′(t) + g( ∫ 0 –r x(t + s)dα(s)) = q(t). By using the classical coincidence degree theory of Mawhin, sufficient conditions for the existence of periodic solutions are established. Recent results in the literature are generalized and significantly ...

متن کامل

A RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION

Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Keldysh Institute Preprints

سال: 2018

ISSN: 2071-2898,2071-2901

DOI: 10.20948/prepr-2018-71